ETUDES DE FONCTIONS NUMERIQUES
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| — Plan d’étude d’'une fonction numérique :

Pour étudier une fonction numérique nous adoptdeopkan suivant :

Déterminer I'ensemble de définition (étudier la thauité)

Etudier éventuellement la parité. Recherche détmge, des symétries
afin de réduire l'intervalle d’étude.

Etudier les limites aux bornes de 'ensemble dendieh ;

Calculer la fonction dérivée et étudier son sigmaliquer le sens de
variation.

Consigner dans un tableau de variation les résystéicedents.
Déterminer les points remarquables a I'étude deration

Points d’intersection de la courbe avec les axesodedonnées

Points d’inflexion etc.

Il — Exemple d’étude de fonctions polynémes :

1- Théoreme 1:Si f admet un extremum relatif d’abscisgeators f'(xy) = 0 ou
f n’est pas dérivable eny.x

2- Théoreme 2:Soit f une fonction dérivable sur un intervallevert ]a ; by.

Si f’(x) s’annule en xde ]a ;b[en changeant de signe, alors f admet un
extremum en
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3- Définition :

Soit f une fonction dérivable sur un intervalle ouvef®h dit que le point
d’abscisse xde | estun point d’inflexionpour la fonctionf si et seulemers
f"(x) s'annule en xen changeant de signe

(En ce point la courbe traverse sa tangente).
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4- Exemple :Soit f la fonction définie paff (x) = x3 —3x+ 2.

a) Etudier les variations de f;
b) Montrer que f admet un point d’inflexion que I'orépisera. On
déterminera les intersections de la coufede f avec les axes de

coordonnées.
c) Tracer la courbe®®) de f dans un repere orthonormé. Quels sont les

extremums relatifs de f ?. En quels points sonatiisints ?.
[l — Etude de fonctions homographiques :
1°) Définition :
On appelldonction homographiquéoute fonction numériqué définie par :

ax+b

cx+d
est appeléeane hyperbole

f(x)= (c#0). La courbe représentative d’'une fonction homograph

2°) Recherche d’asymptotes paralleles aux axes deotdonnées :
a) Asymptote Verticale :

Si lim f(x) =+ ou—c alors la droite d’équatior = a est asymptote
X-a

verticale a la courbe?() de f .

A
Y x = g|| L@ droite d'équation : x = a est
asymptote verticale a la courbe de f.
— A
J
0 i: M
()
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b) Asymptote horizontale :

Si lim f(x) =L (réel),alors la droite d’équation y = L est asymptote

X— _©

horizontale a la courbe (Qle f .

y
y=L .
La droite d’équation : y = L est
T A asymptote horizontale a la courbe de f.
o) i: X
()

3- Exemple :Etudier et représenter la fonction f définie pax) = 2x +12.
X —

IV — Quelques propriétés géométriques

1. Fonctions paires :
Une fonction numériqueé d’ensemble de définition[2st dite paire si, et

seulement siVx € Dy, (X)€ Ds; f(—X) = f (X).
La courbe (@ de f admet I'axe des ordonnées comme axe de symétrie.

2. Fonction impaire :
Une fonction numérique d’ensemble de définition2st dite impaire si, et

seulement siVx € Dy, (—X) € Dy ; f (—=X) = —f (X).
L’origine du repére est centre de symétrie powolarbe (¢) de f dans un
repéere cartésien.

3. Axe de symétrie d’'une représentation graphique :

Dans un repere orthogonal la droite (D) d’équakiena , ( a€R) estaxe de
symétriepour la courbe (de f, si et seulement si(2a — x) =f ().
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4. Centre de symétrie d'une représentation graphique :

Le repére étant quelconqiepoint | (a ; b) est un centre de symépaeir la
courbe (@) de f si et seulement sf, (2a — x) +f (x) = 2b.

5. Fonctions périodiques :
Une fonction numérique est périodique si, seulement si il existe un réel

strictement positif t tel quevx € Dy f (X+t) = f (X) .

On dit alors que t est une période de

— Sif(x) = cos(ax +b) alors la période:% ;
— Sif(x) = sin(ax +b) alors la périodle:% ;

— Sif(x) = tan(ax +b) alors la période:i :

al
|V —Etude de fonctions rationnelles :

1- Asymptote oblique :

 Si lim f(x) = ‘o, alors il y a possibilité d’asymptote oblique &w.

* Si f(x)=ax+b+C(x) avec lim C(x)=0 ; alors la droite d’équation

y = ax+bestasymptote obliqua la courbe au voisinage deo tu —<o.
» Ladroite (D) d’équation : y = ax + b est digymptote obliqua la
courbe au voisinage de deobu -0 ; si et seulement, si

lim [ f(x) - (ax+b)] = 0.

2- Position de la courbe par rapport a son asymptetoblique :

Pour étudier la position de la courl@®) de f par rapport a son asymptote
oblique (D) d’équation : y = ax + b ; on étudiesigne def (x) - (ax+ b) dans®.
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1% cas : Si[f(x) - (ax+b)] < 0 ;alors la courbe (Eest en dessous de (D).
2°™cas : Si [ (x) - (ax+b)] > 0; alors la courbe (Test au dessus de (D).
3™ cas : Si [f(x) - (ax+b)] = 0; alors la courbe (Ccoupe (D) en un poinkXx
3- Exemples d’études et de représentations:

x? -5x+15

-2
a) Déterminer les réels a, b et c tels dye =ax+b + ¢ 5

Exemple 1 :Soit f la fonction définie paif (x) =

b) Montrer que la courbé&f) de f admet une asymptote oblique (D) a préciser ;
c) Etudier la fonctionf ;

d) Montrer que le point | (2 ; —1) est centre dméirie pour la courbe?() de f

e) Etudier la position relative d&;) par rapport a (D) ;

f) Construire (D) et &) dans un repére orthonorme.

Exemple 2 :
. , e X% —2x+6
Etudier et représenter la fonctidrdeéfinie par f (X) = —; :
2xX° —4x+4
. : - x% -1
Exemple 3 :Soit la fonctionf définie parf(x) = >
X

a) Déterminer 'ensemble de définition de Etudier la parité de.

b) Etudier les variations dé puis tracer sa courbe

4- Recherche de I'asymptote oblique :

Soit f une fonction deR versR. S’il existe deux reels a et b tels que :

im X -4 et lim [ f(x)-ax|=b alors la courbed) de f admet
X— Too X X loo

pour asymptote la droite (D) : y = ax + b au vasja de 4o ou de <.
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