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Exercice 1: Calculer les limites suivantes : 
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32°) Calculer la limite de f  en ∞+  et en ∞− dans chacun des cas suivants 
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Exercice 2: 
 Pour chacune des fonctions suivantes donner l’ensemble de définition Df puis 
calculer les limites aux bornes de Df. 
 

1°) 
3

15
)(

−
+=

x

x
xf    ;   2°)  

x

x
xf

12
)(

+=  ;   3°) 
2

4
)(

+
+−=

x

x
xf    ;  4°) 

1

23
)(

2 +−
−=

x

x
xf  

5°)
1

1
)(

2

+
−=

x

x
xf  ;    6°) 

1

232
)(

2

2

+
−+=

x

xx
xf  ;     7°) 

32

54
)(

2 −+
−=

xx

x
xf  

8°) 
( )23

1
)(

−
=

x
xf  ;      9°) 

4

1
)(

2 −
=

x
xf  ;     10°) 

2

232
)(

2

+−
−+=

x

xx
xf  

11°) 
82

26
)(

+−
−=

x

x
xf  ; 12°) 

2

232
)(

2

2

+−−
−+=

xx

xx
xf  ;  13°) xxxxf 753)( 23 −+−=  

 
Exercice 3: 
 
Soit la fonction numérique f définie par 
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La fonction f  est-elle continue en x = –2 ; en x = 1 ? 
 
Exercice 4: 
 
Soit la fonction numérique f définie par 
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Exercice 5: 
 
Soit la fonction numérique f définie par 
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Etudier la continuité de f en x = 1 ; la continuité de g  en x = 0. 
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Exercice 6: 

Soit la fonction numérique f définie par     
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Quelle valeur faut-il donner à m pour que f soit continue au point ?2=x  
 
Exercice 7: 

Soit les deux fonctions numériques
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Quelle valeur faut-il attribuer  à m pour que g  soit un prolongement def  par 
continuité au point ?3=x . 
 
Exercice 8: 

Soit la fonction numérique f définie par 
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1°) Etudier la continuité de f  au point d’abscisse x = 1 
2°) Etudier la dérivabilité de f  au point d’abscisse x = 1. 
 
Exercice 9: 
 
1°) Soient les fonctions f et g définies respectivement par 
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Vérifier que g est le prolongement def , par continuité au point x = 0. 
2°) Dans chacun des cas suivants, préciser l’ensemble de définition de la fonction 
f  et déterminer s’il existe le prolongement par continuité de cette fonction en x0. 
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3°) On considère la fonction f  définie sur [2 ;  + ∞[ par 
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a) Encadrer f  par deux fonctions rationnelles ; 

b) En déduire la limite de f  en  – ∞ et en  + ∞. 

 


