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I– Introduction : 
 
Soit f une fonction dérivable au point x0 = 0. Il existe donc un intervalle ouvert 
de centre 0 et de rayon r, noté I (0 ; r), inclus dans l’ensemble de définition de f, 

et une fonction numérique Ű tels que : 
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Cette écriture de f(x) constitue le développement limité d’ordre 1 de f au 
voisinage de 0 
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II– Définitions : 
a) Définition 1 : Dire qu’une fonction f admet un développement limité 

    d’ordre n  (n ∈ℕ ) au voisinage de 0 signifie qu’il existe un intervalle  

     I (0 ; r) ⊂ Df et une fonction Ű tels que ∀x ∈ I (0 ; r) : 
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        et    Rn(x)=xn Ű(x)  on a ∀x ∈ I (0 ; r) : 
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L’écriture de f(x) sous la forme Pn(x) + Rn(x), s’appelle développement limité 
d’ordre n en 0 de f.  Pn s’appelle la partie régulière du développement limité, et 

la fonction x  ֏  xn Ű(x)  = Rn(x) s’appelle le reste du  développement limité. 
Pn(x) s’appelle l’approximation polynomiale de degré n de la fonction f. 
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b) Exemple de développement limité d’ordre n en 0 : 

 
Trouver le développement limité d’ordre 6 de la fonction cosinus.  
En déduire les approximations polynomiales de degré 4 et 3 de cosinus. 
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xP +−=  est l’approximation polynomiale de degré 3 de cos en 0. 

III– Développements limités d’ordre 3 en 0 des fonctions usuelles: 
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IV– Propriétés: 
 
P1) Une fonction f admet un développement limité en 0 d’ordre 0 si, et 
seulement si, elle est continue en 0. 
P2) si une fonction admet un développement limité en 0, alors celui-ci est 
unique. 
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V– Applications des développements limités en zéro: 
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Ecrivons le développement limité d’ordre 3 de la fonction sinus en 0. 
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b) Déterminer )
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Cherchons les développements limités d’ordre 3 en 0. 
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VI– Développement limité en un point x0 = a : 
Si f admet une dérivée troisième en x0 ; elle admet un développement limité 

d’ordre n en x0=a qui s’écrit : ∀x ∈ I (0 ; r) 
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Exemples : 
Déterminer les développements limités  d’ordre 3 en x0 des fonctions 
suivantes : 

a) f(x) = lnx et x0=1 :      b) f(x) = ex et x0 = 1 ;        c)  f(x) = sinx et x0 = 
4

π
. 

 


